[۳۴]. Kuang, J.-H. and C.-J. Chen, Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. Journal of Micromechanics and Microengineering, 2004. 14(4): p. 647.
[۳۵]. Moghimi Zand, M. and M. Ahmadian, Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics. International Journal of Mechanical Sciences, 2007. 49(11): p. 1226-1237.
[۳۶]. Zhang, Y. and Y.-p. Zhao, Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensors and Actuators A: Physical, 2006. 127(2): p. 366-380.
[۳۷]. Hu, Y.-C., Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 648.
[۳۸]. Younis, M. and A. Nayfeh, A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 2003. 31(1): p. 91-117.
[۳۹]. Ramezani, A., A. Alasty, and J. Akbari, Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. Microsystem technologies, 2006. 12(12): p. 1153-1161.
[۴۰]. Ramezani, A., A. Alasty, and J. Akbari, Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force. Nonlinear Analysis: Hybrid Systems, 2007. 1(3): p. 364-382.
[۴۱]. Zhao, X., E.M. Abdel-Rahman, and A.H. Nayfeh, A reduced-order model for electrically actuated microplates. Journal of Micromechanics and Microengineering, 2004. 14(7): p. 900.
[۴۲]. Nayfeh, A.H., M.I. Younis, and E.M. Abdel-Rahman, Reduced-order models for MEMS applications. Nonlinear Dynamics, 2005. 41(1-3): p. 211-236.
[۴۳]. Abdel-Rahman, E.M., M.I. Younis, and A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 2002. 12(6): p. 759.
[۴۴]. Mojahedi, M., M. Moghimi Zand, and M. Ahmadian, Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. Applied Mathematical Modelling, 2010. 34(4): p. 1032-1041.
[۴۵]. Younis, M.I., Modeling and simulation of microelectromechanical systems in multi-physics fields, 2004, Citeseer.
[۴۶]. Nayfeh, A.H. and M.I. Younis, A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. Journal of Micromechanics and Microengineering, 2004. 14(2): p. 170.
[۴۷]. Moghimi Zand, M., M. Ahmadian, and B. Rashidian, Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages. Journal of Sound and Vibration, 2009. 325(1): p. 382-396.
[۴۸]. Batra, R., M. Porfiri, and D. Spinello, Effects of Casimir force on pull-in instability in micromembranes. EPL (Europhysics Letters), 2007. 77(2): p. 20010.
[۴۹]. Batra, R., M. Porfiri, and D. Spinello, Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. International journal of solids and structures, 2008. 45(11): p. 3558-3583.
[۵۰]. Batra, R.C., M. Porfiri, and D. Spinello, Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors, 2008. 8(2): p. 1048-1069.
[۵۱]. Teva, J., et al., A femtogram resolution mass sensor platform based on SOI electrostatically driven resonant cantilever. Part II: Sensor calibration and glycerine evaporation rate measurement. Ultramicroscopy, 2006. 106(8): p. 808-814.
[۵۲]. Battiston, F., et al., A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sensors and Actuators B: Chemical, 2001. 77(1): p. 122-131.
[۵۳]. Villarroya, M., et al., System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sensors and Actuators A: Physical, 2006. 132(1): p. 154-164.
[۵۴]. Kim, S.-J., T. Ono, and M. Esashi, Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit. Applied physics letters, 2006. 88(5): p. 053116-053116-3.
[۵۵]. Ekinci, K., X. Huang, and M. Roukes, Ultrasensitive nanoelectromechanical mass detection. Applied physics letters, 2004. 84(22): p. 4469-4471.
[۵۶]. Burg, T.P., et al., Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Microelectromechanical Systems, Journal of, 2006. 15(6): p. 1466-1476.
[۵۷]. Voiculescu, I., et al., Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. Sensors Journal, IEEE, 2005. 5(4): p. 641-647.
[۵۸]. Lochon, F., et al., Silicon made resonant microcantilever: Dependence of the chemical sensing performances on the sensitive coating thickness. Materials Science and Engineering: C, 2006. 26(2): p. 348-353.
[۵۹]. Ghatkesar, M.K., et al., Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology, 2007. 18(44): p. 445502.
[۶۰]. Sharos, L., et al., Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Applied physics letters, 2004. 84(23): p. 4638-4640.
[۶۱]. Tseytlin, Y.M., High resonant mass sensor evaluation: An effective method. Review of scientific instruments, 2005. 76(11): p. 115101-115101-6.
[۶۲]. Sinha, N., J. Ma, and J.T. Yeow, Carbon nanotube-based sensors. Journal of nanoscience and nanotechnology, 2006. 6(3): p. 573-590.
[۶۳]. Nayfeh, A.H. and P.F. Pai, Linear and nonlinear structural mechanics2008: Wiley. com.
[۶۴]. Shampine, L.F., I. Gladwell, and S. Thompson, Solving ODEs with MATLAB2003: Cambridge University Press.
[۶۵]. Rao, S.S., Vibration of continuous systems2007: John Wiley & Sons.
[۶۶]. Fryba, L. and L. Frýba, Vibration of solids and structures under moving loads1999: Thomas Telford.
[۶۷]. Kiani, K., Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(9): p. 2391-2401.
[۶۸]. Kiani, K. and B. Mehri, Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. Journal of Sound and Vibration, 2010. 329(11): p. 2241-2264.
[۶۹]. Şimşek, M., Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 2010. 43(1): p. 182-191.
[۷۰]. Yan, T. and J. Yang, Forced Vibration of Edge-Cracked Functionally Graded Beams Due to a Transverse Moving Load. Procedia Engineering, 2011. 14: p. 3293-3300.
[۷۱]. Oh, E.-S., Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Materials Letters, 2010. 64(7): p. 859-862.
[۷۲]. Song, J., et al., Deformation and bifurcation analysis of boron-nitride nanotubes. International journal of mechanical sciences, 2006. 48(11): p. 1197-1207.
[۷۳]. Shu, C., Differential quadrature and its applications in engineering. 2000: Springer.
[۷۴]. Yang, J., X. Jia, and S. Kitipornchai, Pull-in instability of nano-switches using nonlocal elasticity theory. Journal of Physics D: Applied Physics, 2008. 41(3): p. 035103.
Abstract:
Micro and Nano electromechanical systems have been considered mainly in two fields of sensors and actuators in different sciences such as mechanic, aerospace and medicine due to the unique characteristics and distinguished properties. Electrostatically actuation is one of the simplest and most prevalent of actuation and sensing in these systems that lead to instability phenomenon in them.
Prediction of static and dynamic behavior of electromechanical systems have gone along with errors in nano-scale based on classical theories. Hence in the present study, electrostatically actuated carbon nano-switches and carbon nano-sensors are investigated with nonlocal stress theory. At First, the nonlinear governing equations and boundary conditions with nonlocal theory are reformulated and deflection of nanobeam is divided into dynamic and static parts. The static solution is done and then natural frequencies and normal mode shapes are extracted by eigen-value dynamic problem solution in which both of them are the function of static voltage and nonlocal parameter. Due to used in Galerkin approximation method for solving equations to determine pull-in voltage and pull-in time more accurately. In vibration analysis by introducing a new model of carbon nanosensor which their efficiency is examined in the presence of moving nanoparticle. Also nonlinear pull-in instability of boron nitride nanoswitch with nonlocal piezoelasticity theory is investigated. Finally, based on the analysis of static, dynamic and vibration, the results show that the nonlocal influence affect on the nano-electromechanical switches in field of pull-in parameters.
Keywords:
Nano-electromechanical system, pull-in voltage, Carbon nanotube, Boron nitride nanoswitch, Nonlocal elastisity theory, Nonlinear dynamic, Electrostatic actuation.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...